返回

走进不科学

关灯
护眼
第335章 一己之力,比肩神明!(万字更新!
书签 上一章 目录 下一页 书架

第335章 一己之力,比肩神明!(万字更新!!!!)

“.”

在写完那个‘解’字之后。

徐云便放下笔,揣着手站到了一旁。

乖巧.jpg。

今晚分析机这个环节的主人公并不是他,而是巴贝奇和高斯,这是他们的舞台。

待徐云让开身位后。

高斯带着黎曼和小麦,一步一步的走到了桌边。

高斯每走一步,精神便振奋一分。

当来到了桌边后。

这个年过七旬的小老头身上,早已丝毫看不出早先的萎靡。

整个人像是吃了士力架一般精神抖擞,浑身上下焕发着一股前所未见的活力。

他为了这一天已经准备了很久很久,为了保证今天有足够的精力进行计算,他甚至在一周前便谢绝了外人拜访。

除了徐云、黎曼、小麦之外,过去一周谁都见不到高斯的影子。

不知为何。

看着此时的高斯,徐云忽然想到了《圣斗士星矢》里紫龙的师傅童虎。

那位天秤座黄金圣斗士受雅典娜之命监视冥界一百零八名冥斗士,因而常年端坐于庐山五老峰。

同时童虎习得了雅典娜的众神假死之术,为的就是在最终一战中,能够在关键时刻爆发出自己最强的战斗力。

此时的高斯蕴养了一年的精神,就是为了在今夜拥有一个最完美的状态!

而就在徐云脑洞大开之际。

高斯也正好走到了桌边,毫不犹豫的拿起笔,写下了一行公式:

du/dθ+ u =gm/h+(3gm/c)u

△Φ=6πm/l

dx^a/ds=-£aik(dx^i/ds)(dx^k/ds)。

记忆力好的同学想必已经看出来了。

这三道公式,正是徐云在冥王星之夜给出的广义相对论二级渐近解、进动角方程以及弱场低速近似的理论的测地线方程组。

毕竟这年头科学界对于行星的认知,还只停留在一级渐近解范畴。

虽然高斯和拉普拉斯等人已经建立起了微扰理论,但距离‘微扰法’的概念还有一定距离。

而哪怕是微扰法给出的一级渐近解,在行星问题中依旧有些不精确。

所以迫于无奈,徐云在冥王星之夜后,只能将二级渐近解给拿了出来。

没有二级渐近解,即使是高斯都没法计算外海王星天体的轨道。

接着下一秒。

高斯便又写下了另一道公式:

du/dθ+ u=- kaθcos(θ+h)。

x=u-1+2e^(-2u+2)-10ve^(-4u+4)

徐云顿时微微一愣。

早先提及过。

在过去的这整整一年的时间里,高斯虽然在教学方面对徐云毫无保留,将他和小麦真心的当成了关门弟子。

但另一方面。

高斯却从未将他在二级渐近解方面的进度告知过任何人。

即便是负责照顾高斯起居的黎曼,对此也全然一片空白。

这也是徐云对于能否找到x行星没什么把握的两大原因之一:

他不知道高斯在数学上已经推导到了哪种程度。

二级渐进解一共可以分成四个阶段,每个阶段对寻星工作的助力又各有不同,不同进度导致的最终概率也各有不同。

说句不好听的。

如果高斯的研究只停留在徐云给出的渐进解.

那么今晚的寻星任务可以洗洗睡,换成分析机的卖家秀了。

至于徐云没把握的另一个原因则是x星球太远了,即便算出了公式也不一定能够找到目标。

不过如今看来

高斯最次最次都已经算出了小量积累的特解?

这倒是个好消息。

这道公式很快被传到了一旁的大佬观众席上。

今日的来宾专业覆盖面很广,有物理学家、有化学家、有生物学家甚至文学家,并不是所有人都能看懂这道公式的内容。

因此面对这道公式,每个人的反应也各有不同。

有的人一脸茫然。

有的故作矜持、面露不屑。

有的人则心神剧震!

大概半分钟后。

终于有一位来自国外的宾客坐不住了。

只见他起身对阿尔伯特亲王做了个歉意的礼节,便快步朝场内走去。

这人叫做

奥古斯丁·路易斯·柯西。

接着是第二个人,来自英国。

叫做阿瑟·凯莱

然后是第三个

第四个.

他们的名字则是:

德·摩根.

彭赛列.

哈密顿.

如果你仔细观察,会发现这些忍不住走进场中的数学家,尽皆在本土的时间线中有着不错的名气。

你可能说不出他们的具体贡献或者成就,但一定多多少少听过他们的名字。

其实这并不难理解。

高斯所写的二级渐进解乃是由微扰理论进阶而成,若非当世数学大家,绝对看不出它的含义。

因此越是顶尖大佬,此时越忍不住内心的激动。

在这些人中,徐云还通过艾维琳之口见到了一位本该逝去的重量级来宾:

西莫恩·德尼·泊松。

没错,就是在原本时间线里因为被菲涅尔打脸而被动‘青史留名’的倒霉蛋。

原本历史中的泊松在被菲涅尔打脸后抑郁寡欢,最终在1840便因心理疾病遗憾去世。

而如今这个时间线中,泊松亮斑的发现者变成了小牛,这个亮斑也由此改名成了牛顿亮斑。

泊松在不知情的情况下躲过一劫,倒也顺利的活到了现在

来到高斯身边后。

这些大佬很有默契的没有高谈阔论,而是安静的看着高斯写起了算式。

高斯则仿佛没有察觉周围来了人一般,再次提笔,继续写了下去:

“令u=u0+xu1+x2u2+…”

“du0/dθ+u0=k”

“则du1dθ+u1=2kasin(θ+h)”

“当u=5时,忽略渐近解中的o,将其作为一阶近似代入修正项”

这一侧的空地上此时寂静无声,只有高斯笔尖和演算纸摩擦的声音沙沙作响。

所有顶尖数学家如同普通学生一般,恭敬的站在一旁听课。

十多分钟后。

高斯深吸口气,在演算纸上写下了一个最终式:

u*= u*21+ u*22=49kacos(θ+h)+13kaθsin(θ+h)-ka/4θcos(θ+h)-ka/4θsin(θ+h)+θ〔a1cos(θ+h)+ b1sin(θ+h)〕。

看着这道最终式。

一旁徐云的心脏瞬间漏跳了一大拍。

只见他眼睛瞪得滚圆,一句卧槽下意识的到了嘴边,险些就忍不住脱口而出。

这并非他定力不足,而是因为高斯写下的这个方程.

实在太过太过惊人了!

回过神后。

他有些滑稽的揉了揉眼睛,再次朝公式看去。

内容依旧不变。

徐云见状张了张嘴,将右手放到了面前。

只见自己的女朋友,此时正在不停的微微颤抖

这道公式具体数值徐云其实没什么印象,但这道公式的表达形式他却并不陌生:

这道公式的形式,赫然与2017年西班牙天文学家奥尔蒂斯团队通过掩星观测、在巴塞罗那超算中心也就是bsc协助下推导出的环系天体通式几乎一致!

那篇文章的doi是org/10.1038/nature24051,发表在《自然》杂志上,也是截止到2022年9月14号为止最精确的一道通式!(我用这篇论文加上sd.jpl.nasa.gov的jpl精密星历中的de421这个版本算出来的,基本思想是用开普勒平根数解析外推,考虑了根数的随时间的变化,近似到t项,已经尽量合理了。)

同时值得一提的是。

bsc的那台超算叫做odin,也就是北欧神话中的

神王奥丁。

换而言之.

在1851年。

高斯,一个74岁、行将就木的小老头

以凡人之躯,比肩了神明!

看着在纸上缓缓落笔的高斯,徐云的脑海中又浮现出了高斯当初的那句话:

“我不创造奇迹,因为我本就是一个奇迹。”

徐云不知道高斯为了计算这道公式付出了多少心力,这些在此时此刻已经失去了提及的必要。

一切对他努力的描述,都不及此刻这一道十五厘米长的公式来的直观。

这一刻。

地面上的人类之光,灿烂过了天上的万千星辰。

写完这道式子后。

高斯将这张纸递给了黎曼,吩咐道:

“波恩哈德,把它交给查尔斯先生吧——对了,柯西、凯莱你们来的正好,一起帮忙复验数据吧。”

柯西和凯莱以及其他几位数学家们闻言对视一眼,脸上齐齐冒出了一个问号:

“?”

妈耶?!

我们只是过来看个演算过程,怎么一转眼就被抓壮丁了?

不过过了几秒钟。

柯西还是微微一叹,认命道:

“罢了罢了,弗里德里希,我们就给伱做一次苦力吧。”

凯莱和彭赛列等人也跟着点了点头。

高斯的推演过程给他们带来了不少新思路,甚至打破了个别人持续已久的瓶颈,令他们醍醐灌顶。

用玄幻小说的术语来描述,那就是悟道!

因此于情于理,让这些大佬们做一次工具人倒也没啥问题。

黎曼很快将这道式子交给了巴贝奇,由阿达这个人类历史上第一位的程序猿输入起了相关内容。

与此同时。

时任格林威治天文台台长的乔治·比德尔·艾里也带着手下来到徐云身边,将一箱箱的观测记录逐一打开。

这些观测记录都是在冥王星之夜结束后,由高斯和法拉第亲笔写信、嘱托各国天文台拍下的星空观测记录。

作为回报或者说代价。

高斯等人则将施密特望远镜的构造图纸‘支付’给了各大天文台。

徐云对此自无意见。

毕竟施密特望远镜不同于他拿出的其他设备,这玩意儿对科技水平的推动其实没多少特别重大的作用——顶多就是让人类提前观测到一些星体罢了。

这年头也不是老苏当初的公元1100年。

老苏那会儿最普通的望远镜都没出现呢,能够观测星空自然意义重大。

在1851这个时间点,施密特望远镜顶多就是特定情境下会比较有用。

比如妲神星、阋神星被提前发现个几十年,说白了意义也就那样,顶多让冥王星更早的被移除出九大行星罢了。

反正冥王星也没意见不是?

等太空射电望远镜一问世,施密特望远镜的地位还将迅速降低。

除非天文界能靠这玩意儿发现外星人,否则它将是徐云拿出的所有技术中,对科技史推助力最小的一件东西。

“罗峰同学。”

来到徐云身边后,乔治·比德尔·艾里指着箱子,对他介绍道:

“过去一年里,除了欧洲各大天文台之外,我们还说服了美洲的五家天文台进行协作,参与机构一共达到了22家。”

“每家天文台每日最少会拍摄三张照片,加上我们格林威治天文台的全力观测,箱子里的图像记录足足多达两万五千多张。”

“好家伙,这么多呀?”

徐云闻言微微一愣,回过神后连忙对乔治·比德尔·艾里道谢道:

“那可真是多谢您了,艾里先生。”

这年头可不像后世,相片.或者说胶卷的成本很高。

即便是天文台这种官方机构,一张相片的成本也在0.1英镑上下。

按照此前的汇率计算,相当于后世的90到100块钱之间。

因此在徐云此前的预估中。

一家天文台能做到每天拍摄一张记录就非常难得了。

结果没想到这些天文台居然如此给力,一年下来拍摄了这么多的观测记录。

这些观测记录加上分析机、高斯的公式以及最新的工具人团队。

基本上可以说‘人事’方面已经尽到了极致。

剩下的便是.

知天命了。

这一箱箱的观测记录很快被分发到了桌上,由工具人团队们开始进行起了坐标换算。

换算后的坐标被输入分析机,进行最小二乘法的计算。

在冥王星之夜高斯使用的量级是8次方,也就是:

l=(l0+l1*t+l2*t^2 +l3*t^3+l4*t^4 l8*t^8)/10^8。

而这次有了分析机协助,高斯直接上了.

十七次方!

当然了。

能上这种精度的很大部分原因在于轨道经度的换量最大也不会超过1,普遍都在0.1-0.4左右浮动。

比如0.412的17次方是0.000000283957。

0.13的17次方则是0.00000000000000008650415919381338。

这些数字虽大,但都在分析机的量级之内。

如果换成其他更大或者更小数字,那么17次方运算就会超过算力了。

后世计算行星轨道上的一般都是50-70次方,更专业的团队——比如冥王星杀手麦克·布朗那种,使用的基本都是120+的量级。

看到这里。

或许会有同学感觉奇怪:

不对啊。

为啥我手机的计算器和百度随便搜的计算器,都可以计算出几十次方的结果叻?

超算的能力就这?

这就涉及到了一个概念,也就是科学计数法。

目前市面上绝大多数计算机都有一个计算上限,超过这个量级之后,便会把某个数表示成a与10的n次幂相乘的形式。

比如19971400000000=1.99714x10^13,计算器或电脑表达10的幂是一般是用e或e。

也就是1.99714e13云云

现代超算计算要用到的次方乘数,基本上都精确到了小数点后10位甚至更多。

例如0.4556456112的50次方等等。

这种计算若是不适用超算,普通电脑或者计算器很难现实精确的结果,基本上都是约等数。

没用的知识又增加了.jpg。

寻星项目的计算执行者是高斯和巴贝奇,因此在计算开始后,徐云便转移到了今天的‘第二会场’。

书签 上一章 目录 下一页 书架

招黑体质开局修行在废土 从大学讲师到首席院士 我写的自传不可能是悲剧 我在现实世界加点修行 我绑架了时间线 地球上最后一幢楼 我说了我会时光倒流 我的瓶中宇宙 大明话事人 神话:龙君