第308章 高斯的宝藏(下)(8.4k)
“.”
书房内。
看着高斯递到面前的这份全新手稿,徐云的脸上不由冒出了一股好奇。
这里头的内容会是什么?
要知道。
在数学领域里,亲和数属于数论的一个分支。
和它能搭上边的‘亲戚’如果真要一个数,符合条件的例子实在是太多太多了。
比如素数、等和数,孤立数,公和数等等一大堆都是
甚至你硬要扯的话。
非欧几何都能和数论扯上关系:
因为非欧几何也是一个一阶谓词逻辑与初等数论的形式系统,符合哥德尔不完备定理。
因此单靠高斯的介绍,徐云确实猜不出这份手稿的内容,只能亲自观阅才知道了。
随后他伸出双手,小心的接过手稿。
接着他又想到了什么,停下动作,对高斯问道:
“高斯教授,这份手稿是您给我的,看完算.”
结果徐云话未说完,高斯便无情的打消了他的念头:
“当然要记入五卷之一。”
徐云只能耸耸肩。
好吧,卡逻辑bug失败。
不过总体上问题不大,毕竟这五卷手稿的机会本身便是个意外之喜。
随后他又打量了一番手稿外部,发现手稿只被一根红丝带绑着,没有看到类似亲和数那种写有大致内容的封条。
见此情形。
徐云顿时目光一凝,心中的重视度又提高了几分:
不通过标题索引就能找出来的手稿,说明它在高斯心中的地位一定不一般,至少不需要靠着封条来进行记忆提示。
想到这里。
徐云解丝带的动作不由快了几分,看上去就像是在解.解鞋带一样。
嗯,解鞋带,不要多想。
小半分钟后。
一卷摊平的稿纸出现了在了徐云面前。
徐云捏着稿纸上半部的两角,像是催更党倒着拎作者似的将其拿起,目光逐行逐字的看了下去。
几秒钟后。
徐云的瞳孔骤然一缩,大惊之下,手中的手稿险些脱手落地!
只见这份稿纸的开头处,赫然便写着一行字:
《有关奇完全数不存在的证明》
这个标题的正确读法是【有关/奇完全数/不存在/的证明】,其中最关键的核心就是中间的两个词:
奇完全数、不存在。
了解数论的同学应该都知道。
这两个词若是同时出现在后世的2022年,注定将会在数学界中引发一场大地震。
早先提及过。
在徐云穿越来的2022年,亲和数在数学界中的地位一直都有些尴尬:
一方面。
亲和数可以通过计算机穷举列出,跟生产线似的比较约数和。
符合条件的输出yes,反之便是no,一键搞定。
截止到2022年8月15日凌晨3点34分,已经发现的亲和数便超过了11994387对。
其中最长的一对数长达2400多万位——请注意,不是2400万这个数字,而是2400万位,一个亿是九位数。
如果实在不太好理解这个概念,可以把“位”看成一个字。
2400万位数,也就是相当于2400万字的网络小说。
如果笔者把这个数列出来,咱们这本书的字数立刻就可以窜到起点前几
其实这还不算是最离谱的,上一章提到的圆周率才最吓人——它已经被计算到100万亿位了。(感谢读者的指正,我查了一下62万亿记录确实被刷新了,才八个月不到,太快了)
创下这个记录的是谷歌云工程师emma haruka iwao,一位霓虹人。
ta使用了25台谷歌虚拟机,前后了158天,最后在今年6月份创下了这个记录。
这位也是19年计算出了31.4万亿位圆周率的项目领头人,不过比起ta的成就,这位的取向也相当微妙:
从前面的ta就不难看出,这位大佬是个生理女性、心理男性的女同支持者.
所以徐云有时候还挺纳闷的,这年头有本事的人都喜欢给自己加buff么?
ok,话题再回归原处。
计算机既然可以筛选出这么多位的亲和数,那么为啥还说它尴尬呢?
原因很简单。
那就是亲和数的具体规律依旧没有完全被破解,计算机靠的是穷举法而已。
这种方法这导致了这些亲和数中,又出现了另一部分‘变异’并且未知的数字。
比如说12496。
你将它的约数加起来,会得到14288这个数。
再将14288的约数加起来,会得到15472;
然后持续这个过程。
15472会变成14536
14536会变成14264
14264则会变成
12496。
没错。
五次变化之后,正好回到了起点。
这种数就叫做交际数。
由于它的朋友圈比亲和数.或者说相亲数更广一些,因此也有人叫它海王数。
而除了交际数之外,还有一个数同样特殊到了极致。
那就是完全数,也叫做完美数。
这个数的概念其实很简单:
当你把它们的约数相加,就会得到它们自身。
最小的例子是6。
6的约数是1、2和3,而1+2+3=6。
之后是28,因为28=1+2+4+7+14。
28的下一个完全数是496,再接下来就是一个比较大的跨越,到了8128。
至于再往后嘛
就越来越荒唐了。
比如8128的下一个完全数是33550336,接下来是8589869056,后脚紧跟着的是137438691328。
再后面那个拖后腿的则是2305843008139952128,看上去跟报身份证似的.
截止到徐云穿越的时候,完全数一共只有51个。
目前已知的最大完全数是在2018年发现的,有49724095位数字,约数多达1115770321个。
它相当于4900万字的小说,是上面最大亲和数的足足两倍,二者加起来,全网只有《宇宙巨校闪级生》的字数比它两多
这其实是个非常令人头皮发麻的事儿:
想想看吧。
它的1115770321个约数,结果加起来竟然恰好等于自身.
所以后世许多人之所以会认为数学中隐藏着宇宙的奥秘,并不是他们为了提高自身行业重视度说出的贴金言论,而是有些数字真的精妙到了极致。
另外,数学这门学科也在哲学角度反映出了宇宙黑暗而又残酷的现实——伱不会就是不会,写个解顶多就得一分,神仙都救不了你.
咳咳
除了约数方面的特性之外,完全数还有两个特殊的地方:
一个是目前发现的所有完全数都和梅森素数一一对应,无一例外。
也就是找到了多少个梅森素数,便有多少个完全数。
如今执行相关计算的是一个叫做gimps的项目组,14年的时间里一共找到了10个梅森素数.或者说完美数。
华夏国家队目前在这个项目组的贡献度排名第八,总贡献大概是1.5%左右。
顺便分享一个网址,叫做equn.com,这是华夏分布式计算总站的官网。
如果想以自己的方式对数学或别的自然科学的研究做出一点微小的贡献,可以挑选一个合你胃口的项目申请加入。
而除了完全数都和梅森素数一一对应之外。
完全数的第二个特殊之处便是.
目前所有发现的完全数都是偶数,均以6和28结尾。
后世还没有找到一个奇完全数,但同样也没有它不存在性的证明。
2022年对于奇完全数的唯一认知,便是奥斯丁·欧尔提出的证明:
若有奇完全数,则其形式必然是12^p+1或36^p+9的形式,其中p是素数。
也就是说即使存在奇完全数,它最少都在10的1500次方以上。
然后就没了。
没错,没了——数学界对于奇完全数基本上再无理论方向上的进展。
当然了。
这里是指没有成果诞生,并不是说所有人都放弃了相关计算工作。
只是徐云没想到的是.
这个后世令无数人头疼乃至头秃的问题,高斯似乎好像大概也许貌似
在1850年就解决了?
妈耶!
徐云敢拿自己压根就不存在的存稿打赌,后世高斯存世的‘遗物’中,一定没有这么一份手稿!
想到这里。
徐云已然抑制不住内心的激动,开始认真的查阅了起来。
手稿的第一卷不是计算推导过程,而是一张类似日记的随笔。
“1831年小巷,9月晴朗,法拉第更新的第七章,发电机继续推向人类发展的下一行.”
“9月15日,料理完米娜葬礼,心情悲痛万分。”
“沉寂七日过后,窗外忽然传来特雷泽的朗诵声,【肥鱼先生扶起年轻的牛顿爵士,对他说,牛顿先生,车已经备好了,不要停下来啊】!”
“先贤之言如同黑夜中的亮光,令我重新拥有了向前看的勇气。”
“恰好狄利克雷到访,偶见他手中维尔茨堡大学修订的‘数学未解之谜’,玩心渐起。”
“于是随手写下几个小纸片,折叠成团,找来特雷泽随意抽取其一,上面的题目是‘奇完全数是否存在’。”
“后费四小时三十五分钟写下此稿,提上裤子,评价一般货色。”
徐云:
“.”
随后他深吸一口气,翻到了下一页。
刚一翻页,一个硕大明显的字便出现在了他面前:
解。
解:
“众所周知。”
“正整数n是一个偶完全数当且仅当n=2m1(2m1)n=2^{m-1}(2^{m}-1)n=2m1(2m1)其中 m, 2 m1m,2^{m}-1m,2^m1都是素数。”
“设p是一个素数, a是一个正整数,那么有:”
“σ(pa)=1+p+p++p^a={p^(a+1)1}/p-1。”