第72章 你能听出一面鼓的形状吗?
周海从旁边拖了把椅子坐过来,准备和徐川交流一下这方面东西。
没错,就是交流,而不是指点。
在他看来,能够研究弱weyl-berry猜想分支问题的徐川的数学能力已经达到了一定的境界了。
“weyl-berry猜想的源头来源于1966年的数学家马克·卡克,他在当年的一次讲座上,提出了一个留名科学史的问题:‘有人能从声音听出一面鼓的形状吗?’”
“通过声音来听出鼓的形状?这也能做到?”徐川身边,一名凑过来旁听的同学好奇的问道。
周海笑了笑,并未介意学生打断自己的说话,大学和初高中是两种完全不同的学习环境。
在大学中,有些老师除了上课时传授知识外,也经常会和学生聊天。
毕竟学生年轻,对问题的思考有时候会很特别,会带来让人意外的惊喜。
而且通过一些故事来促使学生对某个领域的好奇,让其进入学习状态远比你强塞知识给他更有用,这样的教学方式也更符合大学。
“从数学的角度来说,把一个膜拉伸套在一个刚性支架上,这样就形成了一张二维的鼓。”
“不同形状的鼓在敲击时会产生不同频率的声波,因此会产生不同的声音。”
“通过这些不同的声音,的确可以做到确定鼓的形状。”
“这涉及到阿兰·康纳斯和沃尔特·范·苏伊莱科姆两位数学家的研究。”
“他们扩展了非对易几何的传统框架,以处理几何空间的谱截断和在有限分辨率下提供几何空间的粗粒度近似的公差关系.,并且利用了圆的谱截断为算子系统定义了一个传播数,且证明了它在稳定等价下是一个不变量,并且可以用于比较同一空间的近似。”
“而在这种框架下,通过波动方程我们能描述‘鼓’在被敲响时的振动,同时因为‘鼓面’的边缘牢牢地贴在刚性的架子上,我们可以认为波动方程的边界条件是狄利克雷边界条件。”
“有了这两块的数据,再通过扩散方程等方法,我们就能通过鼓发出的声音来计算出它的形状,哪怕你没有见过它。”
周海笑着解释了一下,却直接说懵了凑过来听热闹的学生。
几何空间的谱截断是什么东东?圆的谱截断又是啥米?
听声辨位他们都知道是什么意思,但是听声辨形状,这听都没听说过。
数学真的能做到的这种地步吗?它不是玄学啊!
掐指一算就能知道发生了什么,这也太离谱了亿点点吧?
倒是徐川,大抵明白了周海的意思。
所谓的“听鼓辨形”,其实就是拉普拉斯算子在一个区域内的本征值问题。
要通过数学进行‘听鼓辨形’,关系到另外一个概念。
那就是‘扩散想象’。
我们都知道,如果将一滴墨水滴入清水中,墨水会随着时间扩散。
这就是扩散现象。
随着时间的推移,物质会自发地从浓度高的地方往浓度低的地方进行扩散,不管是所谓的‘有形’还是‘无形’,都会有这种现象。
比如你将一块铜和一块铁互相压在一起,过一段时间后,通过仪器检测,伱会发现铁的表面有铜,铜的表面有铁,这同样属于扩散,只不过过程相当缓慢而已。