第173章 数学和物理的狂欢
“感觉……他变得和以前不一样了。”
观众席上,舒尔茨看着台上的萧易,不由得说了一句。
旁边的法尔廷斯笑着问道:“哪里不一样了?”
“嗯……哪哪都不一样的感觉。”舒尔茨说道。
法尔廷斯笑了笑,转过头重新看向台上的萧易,说道:“概括点的来说,是他的身上多了一种真正的大师风范吧。”
舒尔茨一愣:“大师风范?”
法尔廷斯点点头,说道:“以前他的报告,开始的时候可不会有那样的闲聊,往往都会直接进入正题,而现在,他在面对我们这么多的听众,却有了闲聊的心思,说明他在面对咱们的时候,已经真正做到平静以待了,就像是咱们都是来听他传授真理的一样——虽然也确实如此。”
“这样吗。”舒尔茨若有所思地点点头,说道:“毕竟,他都连质量间隙问题都给证明出来了,他当然算是大师了。”
“那可不一定。”法尔廷斯摇摇头:“你觉得你算是大师了吗?”
“我?”舒尔茨一愣,随后连连摆手,表示否认:“我怎么算是大师呢……”
“算你还有自知之明。”法尔廷斯笑着道。
舒尔茨的表情顿时一窘。
“能够称得上大师,不仅要在成果上达到大师的境界,在数学史上,能做到这一点的人也只有那么几个,近些年,大概也就只有格罗滕迪克、塞尔那几人而已。”
法尔廷斯说道:“而更重要的还是要在心性上转变过来,至少伱得在心中认可自己的能力,你才真正算的上是一位大师。”
“你啊,还需要好好努力。”法尔廷斯拍了拍舒尔茨的肩膀:“当然,我还是很看好你的,毕竟我当初都已经在媒体面前夸下海口,说你是我最认可的三位数学家之一了,你可不要给我丢人啊。”
舒尔茨表情郑重了起来:“我尽量不会让您失望。”
法尔廷斯笑着点点头。
不过舒尔茨这个时候又回了一句:“那么您觉得您算是大师吗?”
“我?”
面对这个相同的问题,法尔廷斯只是笑着摆摆手:“我是不算的。”
然而,舒尔茨怎么看,都觉得法尔廷斯这个回答,只是出于谦虚罢了。
和他刚才那种回答完全是两种类别。
一时间他忽然明白了法尔廷斯刚才关于“大师的心性”这一说法。
大概就像是他玩过的某款游戏中,有一个角色说过的一句话:真正的大师永远都怀着一颗学徒的心。
“好了,安心听报告吧。”法尔廷斯这时候提醒了一句:“今天就可以亲眼看见,霍奇-顶点代数解析方法的真面目了,可真让人期待啊。”
舒尔茨回过神,随后也重新将自己的注意力转移到了台上。
而此时,萧易已然开始讲述起了他的证明过程。
……
“无疑,想要证明质量间隙问题,是一个十分漫长的攻坚过程,需要探讨各种不同的角度。”
“我从四个方向进行了尝试,首先是格点qcd,这个大家应该都很熟悉,一种数值模拟的方法,通过将时空离散化,可以很轻松的帮助我们验证质量间隙的存在,然而众所周知的原因,数值模拟并不能代替严谨的数学逻辑,也就无法转化为真正的数学证明。”
“然后是schwinger-dyson方程,只要能够找到胶子的自能函数的非零解,这将间接证明质量间隙的存在。”
萧易开始在黑板上演示起他在schwinger-dyson方程方法上的一些成果。
最终,就在他取得了十分关键的进展后,却在最后因为这些解过于复杂,无法继续进行下一步,而不得不放弃。
“然后还有重整化群方法,分析杨-米尔斯理论在不同能标下的行为,我发现了在重整化群流动中显示出一种非微扰固定点,提示可能存在一个质量间隙,但遗憾的是,想要解决这个问题的复杂度,仍然超出了想象。”
“第四种方法,利用ads/cft对偶性,通过共形场论和反德西特空间的对偶关系来理解杨-米尔斯理论的非微扰性质,尽管它提供了一个新的视角,然而最终的复杂度也远远超出了可接受的范围。”
看着萧易给出的这些方法的演示,让在场不少的人都是一阵瞠目结舌。
其中的几乎每种方法都远远超出了他们的想象,也远远超过了学术界对这个问题的研究进展。
而那些在现场的物理学家们,更是一阵汗流浃背,好家伙,这几种方法中所使用到的数学都几乎超出了他们的想象,饶是如此,竟然也无法解决?
众人对于质量间隙问题的难度又有了进一步的认识。
那么,萧易到底是如何解决的?
“最终我瞄准了拓扑量子场论这一角度。”
“杨-米尔斯理论具有丰富的拓扑结构,尝试从tqft进行突破,是一个很好理解的角度。”
“而事实证明,我选择的这个角度也是正确的。”
【对于s^4上的杨-米尔斯场a,其曲率形式f满足:f=da+a∧a.】
【陈数c定义为:c=1/(8π^2)∫_s4tr(f∧f)】
萧易转过头,开始在黑板上写了起来,同时说道:“入手之后,我便开始观察杨-米尔斯理论在四维球面上的表现,众所周知,这种四维球面空间在拓扑性质上非常的特殊。”
“四维球面s^4是一个紧致的、无边界的四维流形,它具有着简单连通性的拓扑性质,同时还有着高阶同伦群的零化性质,这都让我们的分析能够变得稍微简单一些。”
“所以我们将自然而然能够想到利用反自对偶场,以及霍奇对偶算子。”
萧易的推导再度开始。
而随着他在黑板上构造出了他口中的反自对偶场后,立马让在场的很多物理学者想起了当初萧易推导出来的x场,就是从这个反自对偶场中导出来的!
意识到了这一点,他们顿时都是眼前一亮,总算是让他们发现了x场最初的起源,而仔细观察一下萧易给出的这些推导过程,也让他们更为清楚了x场的机制。
一时间,他们都越发期待萧易最后的成果,究竟能够为理论物理学的研究提供多少帮助?
毕竟这场报告的摘要中,萧易可是明确说明过,会说明结论在物理上的意义。
就这样,数学家期待着霍奇-顶点代数解析理论,物理学家们期待着最终结论的物理意义,每个人都有光明的未来……
“……最终,我们可以引出一个定理:设g是一个紧的、简单的李群,且a是定义在四维球面s^4上的一个杨-米尔斯场。如果存在一个非零的陈数c,则杨-米尔斯场a的最低能量激发态具有一个严格正的质量间隙。”
“显然这个定理是等价于质量间隙问题的,因此,我们只需要证明它,也就证明了质量间隙的存在。”
场下的听众们,顿时都屏住了呼吸,仔细观察着萧易给出的这个定理。
“原来如此,他竟然将拓扑量子场论推导到了这种地步……”
第一排的座位上,身为这场报告会主要听众之一的爱德华·威滕,膝盖上放着草稿纸,而他正在跟着萧易的讲述,在草稿纸上进行着推演。
最后,他抬起头,看向萧易的目光中更为震撼。
能够导出这个等价的关系,已经是几乎将整个过程中能用到的各种方法,同量子场论结合到了一种新的极致,其中对于技术的考量,远超他的想象。
其中包含了他曾经研究出来的chern-simons理论,同时还有四维拓扑不变量、纤维丛理论等等一大堆的复杂数学方法。
能够将这么多的方法掌握就已然相当难得了,就更不用说还要将它们全部融会贯通,并且用在推导质量间隙这种难度的问题上面了。
作为一名顶尖的数学物理大师,威滕这回算是对萧易的数学能力有了更深的认识了。
然而,都已经将方法用到此种地步,最终也只能导出这样一个等价的定理吗?
接下来又该如何证明?
应该就是那个已经传遍了的霍奇-顶点代数解析方法了吧?
威滕的心中,也燃起了对这个方法的期待。
而此刻,导出了这个定理后,台上的萧易转过头,朝现场的所有观众们微微一笑:“等价的关系已经被我们得出,接下来的问题,我们该如何证明这个定理呢?”
随后,ppt也被他翻到了下一页。
而这一页上面的内容,正是那个给萧易带来了灵感的霍奇标准猜想。
“霍奇标准猜想,属于一系列关于代数簇上代数循环的猜想之一,与霍奇猜想有一定的联系,但相对来说要更加具体和技术性。”
“大家现在可以观察一下这个猜想的陈述,思考一下我刚才给出的定理,是否能够找出一些联系?”
萧易说到这里,然后就停了下来,从旁边拿起了自己的水杯喝了一口。
场下的人,百分之九十以上都是一脸懵。
不是吧,你真的让我们观察?
是不是有点太看得起我们了,这玩意儿能观察出什么东西来?
对于绝大多数的人而言,他们连这个猜想的陈述都看不懂。
【对于一个定义在复数域上的非奇异射影代数簇x,考虑x的(p,p)-同调类中的代数循环z,定义一个由z诱导的算子l(z):h^m(x,q)→h^(m+2p)(x,q),其中hm(x,q)是x上的第m阶同调群。猜想断言,对于适当的p,这个算子l(z)是正定的。】
“你们看得懂吗?”
台下,叶承等人所在的区域,他们看着萧易给出的这个东西,全部都是一脸懵逼。
“看得懂个鬼啊?”
陈木华深深地打了个哈欠。
此时的他们,基本上都处于昏昏欲睡的状态中了。